nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.24 107-115
基于观点抽取的产品痛点量化研究
基金项目(Foundation): 安徽省高校人文社科重大项目(2022AH040342); 安徽省高校自然科学研究重点项目(2023AH052301); 安徽省质量工程项目(2023jnds003); 专业拔尖人才学术资助重点项目(Smbjrc202305)
邮箱(Email):
DOI: 10.16119/j.cnki.issn1671-6876.2025.02.003
摘要:

数字经济背景下产品评论是反映消费者真实需求和情感的重要信息源,也是挖掘和分析产品痛点的重要资源.然而产品评论中大量的噪声信息及消费者情感表达的多样性和复杂性使产品痛点的识别和量化面临挑战.为帮助企业准确定位产品痛点,提高产品竞争力,满足消费者需求,创新产品优化策略,构建了基于观点抽取的产品痛点量化模型.利用依存句法技术,制定了评价对象、情感词、修饰词的提取规则和过滤规则,从产品评论中抽取完整的观点组合;定义了观点组合情感值和评价对象情感值的计算方法,并通过粗粒度属性与细粒度特征之间的对应关系,构建了产品痛点量化模型.实证证明:模型可以有效识别和量化产品痛点,为企业迭代、升级产品,改善用户体验提供科学决策依据.

Abstract:

In the context of the digital economy, product review is an important source of information that reflects the real needs and emotions of consumers, and are also an important resource for exploring and analyzing product pain points. However, the diversity and complexity of a large amount of noise information and consumer emotional expression in product reviews challenge the identification and quantification of product pain points. In order to help enterprises accurately locate product pain points, improve product competitiveness, meet consumer needs, and innovate product optimization strategies, this paper builds a quantitative model of product pain points based on opinions. The model uses dependent syntax technology to formulate extraction rules and filtering rules for evaluation objects, emotional words and modifiers, and extracts a complete combination of opinions from product reviews. This paper defines the calculation method of the emotional value of the point of opinion combination and the emotional value of the evaluation object, and passes the correspondence between coarse-grained attributes and fine-grained features, a quantitative model of product pain points has been built. Empirical evidence proves that the model in this paper can effectively identify and quantify the pain points of the product, provide a scientific decision-making basis for enterprises to iterate and upgrade products and improve user experience.

参考文献

[1] RANA T A,CHEAH Y N.Sequential patterns rule-based approach for opinion target extraction from customer reviews[J].Journal of Information Science,2019,45(5):643-655.

[2] AUNG S S.Analysis on opinion words extraction in electronic product reviews[J].International Journal of Systems and Software Security and Protection,10(1):47-61.

[3] 张璞,李逍,刘畅.基于规则的评价搭配抽取方法[J].计算机工程,2019,45(8):217-223.

[4] 邱云飞,周双月.基于句法结构和依存关系的评价对象提取[J].计算机应用研究,2020,37(4):1054-1058.

[5] 韦婷婷,陈伟生,胡勇军,等.基于句法规则和HowNet的商品评论细粒度观点分析[J].中文信息学报,2020,34(3):88-98.

[6] 周知,方正东.融合依存句法与产品特征库的用户观点识别研究[J].情报理论与实践,2021,44(7):111-117.

[7] TUBISHAT M,IDRIS N,ABUSHARIAH M.Explicit aspects extraction in sentiment analysis using optimal rules combination[J].Future Generation Computer Systems,2021,114:448-480.

[8] CHEN Z X,HUANG H,LIU B,et al.Semantic and syntactic enhanced aspect sentiment triplet extraction[J].2021.DOI:10.48550/arXiv.2106.03315.

[9] 陈可嘉,柯永诚,林鸿熙.基于句法规则与情感词的隐式特征提取[J].计算机工程与设计,2024,45(3):740-747.

[10] SANTHIRAN R,VARATHAN K D,CHIAM Y K.Feature extraction from customer reviews using enhanced rules[J].PeerJ Computer Science,2024,10:e1821.

[11] ZHAO X W,ZHOU Y,XU X J.Dual encoder:exploiting the potential of syntactic and semantic for aspect sentiment triplet extraction[J].2024.DOI:10.48550/arXiv.2402.15370.

[12] CHE W X,FENG Y L,QIN L B,et al.N-LTP:an open-source neural language technology platform for Chinese[C]//Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2021.

[13] 黎梦娆.基于依存句法规则的产品评论观点挖掘研究[D].长春:吉林大学,2022.

[14] KU L W,CHEN H H.Mining opinions from the web:beyond relevance retrieval[J].Journal of the American Society for Information Science and Technology,2007,58(12):1838-1850.

[15] LI J,SUN M S.Experimental study on sentiment classification of Chinese review using machine learning techniques[C]//2007 International Conference on Natural Language Processing and Knowledge Engineering.2007:393-400.

[16] FU X H,LIU G,GUO Y Y,et al.Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon[J].Knowledge-Based Systems,2013,37:186-195.

[17] 徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J].情报学报,2008,27(2):180-185.

[18] 阿里云.天池AI大赛:情感分析数据集[EB/OL].[2021-03-05].https://tianchi.aliyun.com/dataset/92890.

基本信息:

DOI:10.16119/j.cnki.issn1671-6876.2025.02.003

中图分类号:F273.2;TP391.1

引用信息:

[1]王召义,CHONG Choyyoke,张丽媛.基于观点抽取的产品痛点量化研究[J].淮阴师范学院学报(自然科学版),2025,24(02):107-115.DOI:10.16119/j.cnki.issn1671-6876.2025.02.003.

基金信息:

安徽省高校人文社科重大项目(2022AH040342); 安徽省高校自然科学研究重点项目(2023AH052301); 安徽省质量工程项目(2023jnds003); 专业拔尖人才学术资助重点项目(Smbjrc202305)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文