nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.24 205-212
基于人员布局感知的教室灯光控制系统的设计
基金项目(Foundation): 江苏省大学生创新训练计划国家级项目(202410323036Z)
邮箱(Email):
DOI: 10.16119/j.cnki.issn1671-6876.2025.03.003
摘要:

传统教室灯光等设备控制方式较为粗放,易造成用电浪费.本文基于EasyDL平台设计了九宫格视觉感知模型用于教室人员布局的识别,将实时更新的教室人员布局和灯光状态数据存储在数据库中供前端程序调用.针对教室灯光分区控制需求,收集并标注了教室场景小样本数据集进行训练和优化,然后选择在云端部署.整个系统设计了感知层、传输层、平台层和应用共4层.将感知层获取的教室环境数据以及教室的实时图像预处理后调用云端模型得到教室人员布局编码,通过在教室照明区域与人员布局之间建立区域-设备映射,在应用程序中实现灯光与设备的分区按需控制.测试结果表明系统响应时间小于2 s,能够按照教室不同的人员布局来调整照明策略,达到了省电和智能化控制的目的,为传统教室智慧化改造提供精细化解决方案.

Abstract:

The traditional control methods for classroom lighting and other equipment are relatively extensive, which easily leads to electricity waste. This paper designs a nine-grid visual perception model based on the EasyDL platform to recognize classroom occupancy distribution. Real-time updated occupancy data and lighting status are stored in a database for the front-end application access. To meet the needs of partitioned control of the classroom lighting, a small sample dataset of classroom scenes is collected, and labeled for training and optimization, and then deployed on the cloud. The system is designed with four layers: perception layer, transmission layer, platform layer, and application layer. The classroom environmental data obtained by the perception layer and the real-time images of the classroom are preprocessed, and then the cloud model is called to obtain the classroom personnel layout coding. By establishing a region-equipment mapping between lighting zones and occupancy layout, the partitioned on-demand control of lighting and equipment is realized in the application program. Test results demonstrate that the system response time is less than 2 seconds, and it can adjust the lighting strategy according to different personnel layouts in the classroom, achieving the goals of power saving and intelligent control, and providing a refined solution for the intelligent transformation of traditional classrooms.

参考文献

[1] 黄和平,谢云飞,黎宁.智慧城市建设是否促进了低碳发展?:基于国家智慧城市试点的“准自然实验”[J].城市发展研究,2022,29(5):105-112.

[2] 高广站,王娟,王建伟,等.一种教室区域化照明的智能节能控制装置:CN 201922167141.3 [P].2020-08-11.

[3] 黄积雄,欧少敏,高笛,等.智能教室管理系统研究[J].国外电子测量技术,2020,39(2):147-150.

[4] 田海宁,张慧慧.基于深度学习的灯光照明亮度自适应控制仿真[J].计算机仿真,2025,42(3):506-510.

[5] 林小涵,侯典立,赛耀樟,等.基于深度学习的教室照明系统研究与设计[J].电子设计工程,2025,33(1):176-180,185.

[6] 黄艺香,甘世溪,刘晓波.基于机器视觉的教室智能控制系统设计[J].机电工程技术,2022,51(9):112-115,146.

[7] 陈开源.基于Transformer的图像配准与拼接技术研究[D].成都:电子科技大学,2024.

[8] 王桢,杨培峰,张秋仪,等.基于改进U2Net网络和无人机影像的城市绿化识别方法[J].陕西科技大学学报,2024,42(3):174-181.

[9] 冯瑾,池越,周亚同,等.面向畸变扭曲文档的两种图像矫正网络[J].数据采集与处理,2024,39(1):167-180.

[10] 尤鑫,蔡艺军,林云,等.应用于扩容小样本量YOLO人脸数据集的imgaug图像增广方法[J].厦门理工学院学报,2023,31(5):32-39.

[11] 百度公司.EasyDL [EB/OL].[2025-02-10].https://ai.baidu.com/easydl/.

[12] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

[13] 李云红,于惠康,马登飞,等.改进迁移学习的双分支卷积神经网络图像去雾[J].北京航空航天大学学报,2024,50(1):30-38.

[14] LI C,WANG J.Remote sensing image location based on improved Yolov7 target detection[J].Pattern Analysis and Applications,2024,27(2):50.

[15] 赖小平.基于深度学习的南方野生鸟类识别系统的设计[J].软件工程,2023,26(1):34-37.

[16] 田明霞.高校智慧教室的设计研究与应用[D].南昌:南昌大学,2024.

[17] 谢幼如,黎佳,邱艺,等.教育信息化2.0时代智慧校园建设与研究新发展[J].中国电化教育,2019(5):63-69.

基本信息:

DOI:10.16119/j.cnki.issn1671-6876.2025.03.003

中图分类号:TU113.66

引用信息:

[1]李昊征,芮智,许海燕.基于人员布局感知的教室灯光控制系统的设计[J].淮阴师范学院学报(自然科学版),2025,24(03):205-212.DOI:10.16119/j.cnki.issn1671-6876.2025.03.003.

基金信息:

江苏省大学生创新训练计划国家级项目(202410323036Z)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文